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Abstract: The Visible Infrared Imaging Radiometer Suite (VIIRS) Land Surface Temperature (LST)
has been operationally produced for a decade since the Suomi National Polar-orbiting Partnership
(SNPP) launched in October 2011. A comprehensive evaluation of its accuracy and precision will
be helpful for product users in climate studies and atmospheric models. In this study, the VIIRS
LST is validated with ground observations from multiple high-quality radiation networks, including
six stations from the Surface Radiation budget (SURFRAD) network, two stations from the Baseline
Surface Radiation Network (BSRN), and 13 stations from the Atmospheric Radiation Measurement
(ARM) network, to evaluate its performance over various land-cover types. The VNP21A1 LST was
validated against the same ground observations as a reference. The results yield a close agreement
between the SNPP VIIRS LST and ground LSTs with a bias of −0.4 K and a RMSE of 1.96 K over six
SURFRAD sites; a bias of −0.2 K and a RMSE of 1.93 K over two BSRN sites; and a bias of −0.1 K
and a RMSE of 1.7 K over the 13 ARM sites. The time series of the LST errors over individual sites
indicate seasonal cycles. The data anomaly over the BSRN site in Cabauw and the SURFRAD site in
Desert Rock is revealed and discussed in this study. In addition, a method using Landsat-8 data is
applied to quantify the heterogeneity level of each ground station and the results provide promising
insights. The validation results demonstrate the maturity of the JPSS VIIRS LST products and their
readiness for various application studies.

Keywords: land surface temperature; VIIRS; split window; temperature-based validation; SURFRAD;
BSRN; ARM

1. Introduction

With the launch of the SNPP satellite in 2011, the VIIRS LST, as an important baseline
environmental data record (EDR), has now been produced from infrared radiance measure-
ments for over ten years. The NOAA-20 satellite was successfully launched in November
2017 and its LST data were available since 5 January 2018. The LST is one of the essential
climate variables (ECV), i.e., important variables with a critical contribution to make to the
characterization of Earth’s climate, as specified by the Global Climate Observing System
(GCOS) [1]. Therefore, the availability of long-term and high-quality LST observations
is indispensable.

The LST data are useful for various applications in climate research, such as numerical
weather prediction models and data assimilation systems [2,3], evapotranspiration evalua-
tion [4,5], agricultural drought monitoring [6], soil moisture downscaling [7], and urban
heat island monitoring [8,9], etc.

The VIIRS LST is retrieved based on the Split Window (SW) algorithm, which is a
widely used approach in operational LST productions, such as the Moderate Resolution
Imaging Spectroradiometer (MODIS) LST [10], Advanced Baseline Image (ABI) LST on
Geostationary Operational Environmental Satellite (GOES) series [11], Spinning Enhanced
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Visible and InfraRed Imager (SEVIRI) LST [12], Advanced Along-Track Scanning Radiome-
ter (AATSR) LST [13], and Sentinel-3 LST [14], etc. The early SNPP’s VIIRS LST used a
surface-type-dependent algorithm where the coefficients are stratified by the 17 Interna-
tional Geosphere Biosphere Program (IGBP) surface types [15]. Because the surface type is
annual static data, it fails to capture the seasonal variations of some of the surface types,
such as cropland, grassland, mixed forest, savannas, etc. It was replaced with the enterprise
LST algorithm in 2019 [16], in which the emissivity is explicitly used in the formula to
characterize the surface emission feature and to extend the heritage by MODIS LST.

Note that the VIIRS LST product has gone through several major updates, including
the algorithm change as mentioned above and updates to the lookup table (LUT) a couple
of times, which certainly has an impact on the validation results. Previous studies validated
the VIIRS LST for a certain short time period, with the algorithms in operation during
that time. Li et al. [17] evaluated the VIIRS LST using ground observations collected in
an arid area of northwest China for the time period from June 2012 to April 2013. The
results demonstrate the accuracy with a bias of 0.36 K and −0.58 K and a root mean square
error (RMSE) of 2.74 K and 1.48 K for the four sites during the daytime and nighttime,
respectively. Liu et al. [15] validated the VIIRS LST using ground observations from the
SURFRAD and the results show an overall bias of −0.4 K and RMSE of 2.4 K for the period
from 2012 to 2015. The above two studies evaluated the performance of the VIIRS LST
derived from the surface-type-dependent algorithm. Liu et al. [16] validated the NOAA-20
VIIRS LST derived from the enterprise LST algorithm, using SURFRAD data and BSRN data
as a reference. It shows a bias of −0.3 K and an RMSE of 2.06 K for the SURFRAD stations
and a bias of 0.2 K and a RMSE of ~2 K for the BSRN sites. Despite the data from different
algorithms at different stages, the results are generally consistent with a slight improvement
observed in the implementation of the enterprise LST algorithm. However, the difference
in the satellite LST retrieval algorithms may introduce significant LST differences under
specific conditions, due to the sensitivity and uncertainty distribution of each algorithm.
It demonstrates the need for an enterprise satellite LST algorithm for the LST production
from satellite series within one mission and even among different satellite missions. It will
facilitate the cross-satellite comparison and help to build long-term, consistent LST data
records for climate studies.

Compared to the MODIS LST, the VIIRS LST has not gained a lot of attention from
users, but VIIRS will eventually replace MODIS in providing land surface products. There-
fore, it is very important to provide the user community with an assessment of the VIIRS
LST products. The aim of this work is to provide a comprehensive evaluation of the ac-
curacy and precision of the VIIRS LST product using 10 years of data, reprocessed with
the enterprise LST algorithm and the latest LUT in operation. Specifically, the satellite LST
is compared with the ground observations from multiple radiation networks including
SURFRAD, BSRN, and ARM, which are located in different areas with various land cover
types. These ground in situ data were widely used in the satellite LST validation. Guillevic
et al. [18] took in situ data from the Bondville site in SURFRAD and reported a bias of
0.3 K for the VIIRS LST. Li et al. [19] validated the MODIS LST using ten years of data
over six SURFRAD sites, resulting in a bias of −0.93 K and RMSE of 2.65 K. The GOES-R
LSTs were validated over one year of SURFRAD data yielding an average precision of
2.3 K [20]. Martin et al. [21] used measurements over six SURFRAD stations to validate
the performance of five satellite LST datasets including AATSR, GOES, two Glob Tem-
perature MODIS products (MOGSV and MYGSV), and SEVIRI, and reported the average
accuracies of within ±2.0 K during the night, and within ±4.0 K during the day. The ARM
observations from the SGP station were used to validate the GOES LST [22] and the Glob
temperature LST products [23].

The paper is organized as follows: the data used in this study are described in Section 2,
followed by the methodology and the data processing procedure. Results are presented in
Section 4 and the discussion is in Section 5. The conclusion is given in Section 6.
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2. Data Used
2.1. Satellite Data

The VIIRS onboard the SNPP, NOAA-20, and future JPSS series, a scanning radiometer,
collects visible and infrared imagery and radiometric measurements of the land, atmo-
sphere, cryosphere, and oceans. The NOAA VIIRS LST EDR, a granule product, is produced
daily for both daytime and nighttime. Each granule contains 86 s of temporal VIIRS sens-
ing with 768 detectors’ scan lines, at 750 m moderate spatial resolution. The VIIRS LST
product includes layers of LSTs, quality control flags, emissivity for band M15, M16, and
broadband, satellite viewing angle and azimuth angle, latitude, and longitude, and it is
distributed via NOAA, the Comprehensive Large Array-data Stewardship System (CLASS)
(https://www.avl.class.noaa.gov/saa/products/welcome, accessed on 4 June 2022). Both
the SNPP and NOAA-20 VIIRS LSTs are used in this study, in which the NOAA-20 LSTs
are only used for validation against SURFRAD observations with the purpose of verifying
the consistent performance between the two LST datasets. The SNPP LST has 10 years of
data from February 2012 to January 2022, and NOAA-20 LST has four years of data from
January 2018 to December 2021. Both of the LSTs are reprocessed with the enterprise LST
algorithm, using the latest LUT in operational and land surface emissivity (LSE) data in
its latest version to ensure consistent validation. The enterprise LST algorithm has been
operationally implemented since June 2019, which uses emissivity explicitly in the formula
and is expressed as:

LST = a0 + a1T15 + a2(T15 − T16) + a3ε + a4ε(T15 − T16) + a5∆ε (1)

where ai are algorithm coefficients with a stratification of day/night condition, sensor
view zenith angles, and total precipitable water vapor conditions; ε = (ε15 + ε16)/2 and
∆ε = (ε15 − ε16), where ε15 and ε16 are the spectral emissivity values of the M15 and M16
channels, respectively.

The LSE product is generated based on the vegetation cover method (VCM), which
combines two constant emissivity values from the bare ground and full vegetation coverage
situations. The daily emissivity is adjusted according to the VIIRS’ daily green vegetation
fraction (GVF) and snow fraction products. The new daily LSE product (NOAA LSE
Product) provides the spectral emissivity for the VIIRS split window bands, as well as
the broadband emissivity at 1 km spatial resolution [24]. In addition, the VNP21A1 LST
product, including the VNP21A1D for daytime and the VNP21A1N for nighttime, is used as
a reference data set, in which two years of data, from 2019 and 2020, were used in this study.
The VNP21 LST product is developed using a physics-based temperature and emissivity
separation (TES) algorithm to dynamically retrieve both the LST and the emissivity for the
VIIRS onboard the SNPP satellite, which is then aggregated to produce the global daily
(VNP21A1) LST. Details on the VNP21A1 product can be found in [25].

2.2. Ground Data

The ground stations are located in different regions worldwide with different land
covers and topography. They are operated under three radiation networks, including
SURFRAD, BSRN, and ARM.

All three of the network stations provide upwelling and downwelling broadband IR
radiances in the wavelength range from 4–50 µm with a small temporal interval i.e., one
minute in their measurements which allows the validation to be performed with a nearly
simultaneous observation between the satellite and the in situ instrument. The in situ LST
is derived from the upwelling and downwelling radiance flux by the Stefan-Boltzmann law

F↑ = εσT4
s + (1− ε)F↓ (2)

where F↑ and F↓ are the upwelling and downwelling longwave radiation flux, respec-
tively; ε is the broadband surface emissivity and σ is the Stefan–Boltzman constant
(σ = 5.67051 × 10−8 Wm−2k−4), and TS is the surface skin temperature. Here, the broad-

https://www.avl.class.noaa.gov/saa/products/welcome
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band emissivity is derived from the NOAA LSE product. Ts is then obtained by inverting
Equation (2):

Ts =

[
F↑ − (1− ε)F↓

εσ

] 1
4

(3)

From Equation (3), the accuracy of the ground LST depends on the accurate mea-
surements of the upwelling and downwelling radiation and the broadband emissivity
(BBE). Different types of instruments are used in in situ networks. The infrared radiometer,
e.g., the pyrgeometers used in all of the SURFRAD sites measuring both downwelling and
upwelling radiation has an uncertainty about±5 W·m−2 [26]. The BBE uncertainty makes a
minor contribution to the total LST uncertainty compared to the radiometer measurements’
uncertainty. The NOAA broadband emissivity for the spectral range of 8–13.5 µm has an
uncertainty of 0.012, based on the comparison with the in situ emissivity measurements [24],
which give rise to an uncertainty in the ground LST of less than 0.4 K for 99.6% of the
total matchups between the SNPP LST and SURFRAD observations. The three uncertainty
components, including upwelling measurement uncertainty, downwelling measurement
uncertainty, and BBE uncertainty, are mutually independent and result in an overall LST
uncertainty of 0.6–2.0 K [21] for all of the stations considering that the BBE uncertainty has
a minor contribution compared to the other two components. In this study, the NOAA
broadband LSE is matched to the in situ station and the in situ LST is calculated based on
the latest LSE dataset.

2.2.1. SURFRAD Stations

The SURFRAD stations provide long-term high-quality in situ measurements of the
surface upwelling and downwelling longwave radiations, along with other meteorological
parameters [27]. An upward looking pyrgeometer on the main platform measures the
longwave radiation emitted downward by the clouds and other atmospheric constituents.
Another pyrgeometer is mounted on a 10-m high tower in each SURFRAD site, facing
downward to sense the surface-upwelling longwave radiation. The spatial representative-
ness is about 70 m× 70 m [28]. Observations from the SURFRAD stations have been widely
used for evaluating satellite-based estimates of surface radiation, for validating hydrol-
ogy, weather prediction, climate models, and satellite LST products from the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER), GOES, MODIS, and VI-
IRS [15,16,28–31]. The SURFRAD consists of seven stations, from which the Goodwin Creek
(GWN) site was removed by the LST validation, due to the onsite thermal heterogeneity
which caused the ground LST to be lower than the satellite LST in the daytime, while it
was higher in the nighttime [16]. The remaining six SURFRAD sites located throughout the
USA covering a variety of surface types are used in this study, and the details are provided
in Table 1. The NOAA SURFRAD network site locations were chosen, with the intention
of best representing the diverse climates of the United States. Special consideration was
given to the places where the landform and vegetation are homogeneous over an extended
region, so that the point measurements would be qualitatively representative of a large area
(https://www.esrl.noaa.gov/gmd/grad/surfrad/overview.html, accessed on 1 June 2022).

Table 1. Geo-Location and surface type of the six SURFRAD stations.

No. Site Location Station Abb. Lat(N)/Lon(W) Elevation(m) Surface Type

1 Bondville, IL, USA BON 40.05/88.37 230 Crop Land
2 Fort Peck, MT, USA FPT 48.31/105.10 634 Grass Land
3 Table Mountain, CO, USA TBL 40.13/105.24 1689 Grass/Crop Land
4 Desert Rock, NV, USA DRA 36.63/116.02 1007 Shrub Land
5 Penn. State Univ., PA, USA PSU 40.72/77.93 376 Cropland
6 Sioux Falls, SD, USA SFX 43.73/96.62 473 Cropland

https://www.esrl.noaa.gov/gmd/grad/surfrad/overview.html
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2.2.2. BSRN Stations

The radiometric network, BSRN, was launched in 1992 by the World Climate Research
Program (WCRP) to support the research projects of the WCRP and other scientific pro-
grams [32]. It provides 1-min averaged short- and long-wave surface radiation fluxes of
the best possible quality currently available. At a small number of the stations (currently
58 are active) in contrasting climatic zones, covering a latitude range from 80◦ N to 90◦ S,
the solar and atmospheric radiation is measured with instruments of the highest available
accuracy and with high time resolution (https://bsrn.awi.de, accessed on 4 June 2022).
However, only two of the stations are selected for LST validation for several reasons: the
longwave upwelling and downwelling data availability; temporal overlap with VIIRS
measurements; and the site homogeneity requirements for LST validation. The selected
two sites are located at Gobabeb, Namibia (GOB) and Cabauw, The Netherlands (CAB).
Table 2 provides details on these two stations.

The CAB site is mainly covered by cropland, with residential housing in the surround-
ing area, where the farmland is a patchwork of different crops, such as corn and potatoes
etc., but mostly dominated by grassland. The GOB site is located in the hyper-arid climate
of the Namibia desert. Note that for the GOB site, the downwelling radiation sensor and
upwelling radiation sensor are mounted at different locations, with about a 10 km distance
between them. The downwelling sensor is located near the Gobabeb Research and Training
Center (latitude 23.56◦ S, longitude 15.04◦ E), where the nearby Kuiseb river forms a natural
boundary between the large gravel plains (>900 km2) and the sand dunes of the Namib
Desert [33]. The upwelling sensor is located at latitude 23.519◦ S and longitude 15.083◦ E,
where there are homogeneous gravel plains with very sparse grass coverage. The matchups
between the in situ and satellite data are set at the homogeneous upwelling sensor location.

Table 2. Geo-Location and surface type of the two BSRN stations.

No. Site Location Station Abb. Lat(N)/Lon(E) Elevation(m) Surface Type

1 Cabauw, The Netherlands CAB 51.97/4.93 213 Crop Land
2 Gobabeb, Namibia GOB −23.56/15.04 407 Bare ground

2.2.3. ARM Stations

The Atmospheric Radiation Measurement (ARM) operates three fixed-location atmo-
spheric observatories, including the Southern Great Plains (SGP), the North Slope of Alaska
(NSA), and the Eastern North Atlantic (ENA). The SGP atmospheric observatory, the first
field measurement site established by ARM, is the world’s largest and most extensive
climate research facility [34]. The ARM provides longwave downwelling and upwelling
radiance at a 60 s average with a pyrgeometer instrument similar to the instrument used in
the BSRN stations. Thirteen of the extended SGP sites have been included in this study,
with the geolocation and surface type information given in Table 3.

Table 3. Geolocation and surface type of the ARM stations.

No. Site Name Station Abb. Lat(N)/Lon(W) Altitude(m) Surface Type

1 sgpsirsE9 E9 37.133/97.266 386 Pasture
2 sgpsirsE11 E11 36.881/98.285 360 Pasture
3 sgpsirsE12 E12 36.841/96.427 331 Native Prairie
4 sgpsirsE13 E13 36.605/97.485 318 Pasture and Wheat
5 sgpsirsE15 E15 36.431/98.284 418 Pasture
6 sgpsirsE32 E32 36.819/97.8199 328 Pasture
7 sgpsirsE33 E33 36.9255/97.0817 357 Grassy field
8 sgpsirsE34 E34 37.0694/96.7606 417 Pasture
9 sgpsirsE35 E35 35.8615/97.0695 294.1 Pasture
10 sgpsirsE36 E36 36.1166/97.5112 336.8 Pasture
11 sgpsirsE37 E37 36.3106/97.928 378.9 Grass
12 sgpsirsE40 E40 36.31937/96.76203 247 Pasture
13 sgpsirsE41 E41 36.87956/97.08645 340 Grassy field

https://bsrn.awi.de
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3. Methodology and Data Processing

LST validation is challenging because of its high spatial, temporal, and directional
variabilities. Three approaches have been widely used for the LST product validation:
temperature-based (T-based) validation; radiance-based validation (R-based); and the
cross-satellite comparison method [35]. In addition, the time series inter-comparison
method, widely used in sea surface temperature validation (e.g., [36]), is also adopted for
LST validation, such as the detection of potential instrument problems [37] or unrealistic
outliers due to undetected clouds. However, this approach requires a relatively long time
series of observations over temporally highly stable targets, e.g., inland water bodies [37],
therefore its application in the LST validation is limited. These methods are complementary
and provide different levels of information about the accuracy of the satellite-derived LST
products [38].

The T-based validation uses the ground in situ LST measurements directly as an
independent reference, to compare with the satellite LST; then, the difference between the
two variables is investigated and analyzed, based on a statistical technique. There are
several requirements for the ground sites to be suitable for the LST validation. First of all,
the ground site should be able to provide long-term high-quality in situ LST observations.
The instrument calibration, data quality control, and site maintenance should be performed
on a regular basis. Secondly, the ground site should be able to provide a stable and
sufficiently high sampling rate of the in situ measurements e.g., every 1 min to have a good
temporal collocation with the satellite LST. Thirdly, the ground site should be relatively
homogeneous within its surrounding areas with a size comparable to the satellite pixel.
Most of the ground LST is measured within a small area, with a limited field of view
comparing the relatively large satellite pixel size. In addition, the pixel size of a polar orbit
satellite varies over the satellite zenith angle, which results in the edge pixel being two
or three times the nadir pixel size with a large satellite viewing angle. Therefore, the site
needs to have a homogenous surface cover over a relatively large area to be able to spatially
represent the pixel LST.

In this study, the T-based validation method is used to evaluate the quality of both the
VIIRS LST product and the VNP21A1 LST product through the comparison with ground in
situ measurements. The time series analysis of LST error is performed over each ground
site to detect anomalies, error patterns, and annual or seasonal signals.

Although the T-based validation is a well-established procedure, some of the details
of satellite LST screening and ground data processing might be different from previous
studies. Considering the cloud residue effect and the ground in situ data quality control,
the following procedures were used for the matchup between the satellite LST and the
ground in situ LST measurements: the temporal difference is less than 86 s, which is the
duration of a single granule; the area spatially closest to the center of the pixel is used for
the comparison; the 3 × 3 neighboring pixels are all marked as confidently clear to reduce
the nearby cloud impact; the standard deviation of the band M15 brightness temperature
in the neighboring 3 × 3 box is less than the threshold, which is set as 1.5 K for all of the
sites; the standard deviation of the 30 min (centered at the matchup time) downwelling
radiation from the in situ observations is less than a predetermined threshold, which is
set as 1.2 W·m−2 for all of the sites. The above procedure is applied to the validation over
all of the ground stations for both the SNPP and NOAA-20. For VNP21A1, however, it
is unable to get the corresponding band 15 brightness temperature, so the criterion of the
standard deviation of the band M15 brightness temperature in the neighboring 3 × 3 box
is removed.

The spatial mismatching is often reported in the LST validation, with the ground
observations mainly due to upscaling [15,16,18,19,21,23]. The upscaling model, introduced
to decrease this uncertainty, shows improvement in the validation methods over the stations
with complex backgrounds [18]. However, it is very complex and might introduce new
uncertainty to the problem. We, therefore, use the high-resolution independent satellite data,
such as Landsat 8, to analyze the site heterogeneity effect and understand the heterogeneity
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of each site. The analysis results of the brightness temperature at 11 microns (Landsat
8 band 10 is referred to as BT10 in the plot) and NDVI were used as variables in this
study. The aggregated value of the Landsat 8 pixels falling within an area circled at the
site location with a radius of 1 km is used to represent the parameter at the VIIRS pixel
i.e., Vararea. The field view of the in situ instrument is calculated considering the tower
height and sensor geometry, and the site-circle response area radius is 35 m for SURFRAD,
30 m for ARM, and 45 m for the BSRN stations, which represents an approximately 90%
response of the site instrument. Then, the aggregated value of the Landsat 8 pixel falling
within this smaller circle area is used to represent the ground value i.e., Varpoint. Note that
neither the Vararea nor the Varpoint would be compared with the satellite LST retrievals.
The difference between these two values Vararea − Varpoint does not involve a sensor or
algorithm difference, but only involves a spatial scope difference, which is referred to
as scale difference to quantify the heterogeneity near a ground station. With a long-
time series of the above scale differences, we can identify the seasonal and inter-annual
variations or system deviations, etc. In addition, the analysis also provides the internal
heterogeneity denoted by the standard deviation of variables of the Landsat’s pixels’ set
which is composed of all of the pixels within the 1 km area. To minimize the impact of
cloud, only cloud-clear measurements are used in this analysis, i.e., all of the Landsat
8 pixels falling within the satellite footprint are cloud-free observations.

4. Results
4.1. Validation Results against SURFRAD

A total of 10 years of SNPP VIIRS LST data, from February 2012 to January 2022, were
used in the validation against the SURFRAD observations and four years of the NOAA-20
VIIRS LSTs, from January 2018 to December 2021, were used to verify the consistency
between the two JPSS series LST products. In addition, two years of the VNP21A1 data,
from 2019 and 2020, were used in this study as a reference.

Besides the validation procedures mentioned in Section 3, an additional filter is applied
over the site in Bondville, IL, USA. During the late spring and early summer, an obvious
daytime discrepancy between the satellite LST and the in situ measurement was reported
in previous studies [15,17,18]. The satellite LST is 6 K to 10 K warmer than the ground in
situ observations. Li et al. [19] compared the 10 years 16-day average NDVI and the daily
emissivity datasets from the MODIS observations and found that this feature might be
caused by an anomalous NDVI–emissivity relationship, i.e., emissivity does not change
accordingly with the NDVI change during the time period. Guillevic et al. [18] mentioned
that the validation results obtained for the stations surrounded by croplands present
strong seasonal dependency: the station observations may be closer/deviate more from the
temperature of surrounding fields, according to crop maturity. When the crops are short,
they will have little shade on the ground. The satellite views the scene at a certain angle, so
that the soil surface emission has a great contribution to the warmer satellite LST estimation.
The radiometer of the station, however, is always looking down at the nadir measuring the
surface upwelling radiance from the vegetation canopy. Similarly, the mismatch with the in
situ sensor observation also happens during the harvest season, when no crop cover is on
the satellite footprint which also leads to a warmer satellite LST estimation than the ground
LST. Considering its great impact on the validation, the mismatch in April, May, and June
during the growing season and in September and October during the harvest season were
removed from the results over the BON site. The overall comparison shown in Figure 1left,
a combined validation of six SURFRAD sites for both daytime (in red color) and nighttime
(in blue color) with over 10,000 matchups, indicates a bias of −0.37 K and RMSE of 1.96 K
from SNPP, compared to a bias of −0.45 K and −0.33 K, and RMSE of 1.92 K and 2.28 K
from NOAA-20 and VNP21A1, respectively. Both the SNPP and NOAA-20 achieve the
same correlation of 0.993, which suggests their consistent performance. Among all of the
samples from the SNPP, about 52% have absolute errors within 1 K, 29% have absolute
errors from 1 K to 2 K, 11% have errors from 2 K to 3 K, and 8% have errors larger than 3 K.
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Figure 1. The overall VIIRS LST validation against SURFRAD observations for SNPP (left), NOAA-
20 (middle) and VNP21A1 (right, two years of data in 2019 and 2020 were used).

The nighttime comparison result shows a bias of −0.35 K, −0.28 K, and −0.55 K, a
RMSE of 1.77 K, 1.63 K, and 2.19 K, the daytime result shows a bias of −0.4 K, −0.79 K, and
0.07 K with a RSME of 2.3 K, 2.37 K, and 2.44 K for SNPP, NOAA-20, and VNP21A1 LST,
respectively. The nighttime LST generally outperforms the daytime LST, as expected. Out-
liers are observed from all three of the LST validation results particularly in the nighttime,
where the matchup points are mainly concentrated below the 1:1 line, meaning that the
satellite LST is much lower than the ground LST observations. Those are likely due to the
undetected cloud contamination, which implies the great impact of the nighttime cloud
detection on the LST validation. The cloud screening procedure may fail to detect the cloud
for a certain scenario.

It is noticed that the NOAA-20 VIIRS LST presents a larger negative bias in the daytime
compared to the SNPP VIIRS LST, while a closer bias in the nighttime, as shown in Figure 1.
The site-wide validation results, as shown in Figure 2, display a close performance between
the SNPP and NOAA-20 over all of the sites except DRA, with a great deviation of −2.3 K
from NOAA-20 compared to −0.8 k from SNPP VIIRS LST in the daytime. Therefore,
the time series of LST errors i.e., the difference between the satellite LST and ground LST
(∆LST) at all of the SURFRAD sites, are shown in Figure 3.
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Figure 2. Site-wide validation results for SNPP (left) NOAA-20 (middle) and VNP21A1 (right).

The top right plot shows the time series over the DRA site. It indicates a strong
seasonal cycle in the difference, which was not so pronounced prior to the year 2017. The
discrepancy increased over time, particularly after 2018, when the SNPP and NOAA-20
coexist, which explains the cause of the large negative bias exhibited in the NOAA-20
LST. Li et al. [19] also reported a strong seasonal cycle over the DRA site, with ten years
of MODIS data from 2002 to 2012, but to a lesser extent. A large negative bias over the
DRA site was observed and the surface emissivity in the MYD11A product is on average
0.98 [19]. A significant negative bias was also reported in the MODIS LST validation at the
four barren surface sites attributed to the overestimated emissivity in arid and semi-arid
regions [39]. The ASTER Global Emissivity Dataset (GED), a mean emissivity database, is
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used as the data source for the emissivity climatology over the bare ground in the NOAA
LSE product. It is reported that ASTER GED can improve the accuracy of SW LST over
a barren surface for MODIS data [40]. Figure 4 indicates the mean emissivity of 0.967
compared to 0.98 for MODIS. Therefore, less impact is expected from the NOAA LSE input
on the LST underestimation.
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The DRA site is located about 65 miles northwest of Las Vegas. The site consists of
mostly open shrubland with some exposed bare soils. The emissivity map within 1 km
of the site, using the ASTER GED data, indicates that it is the most homogeneous site
in terms of land cover among the seven sites in the SURFRAD network. In order to
understand the increasing underestimation, factors relevant to the satellite LST retrieval,
such as total water vapor, spectral emissivity, etc., and factors related to the ground in situ
LST calculation, such as broadband emissivity, upwelling, and downwelling radiation, etc.,
have been analyzed. As shown in Figure 4, the total precipitable water (TPW) obtained
from the GFS forecast, an important parameter used in the satellite LST retrieval for
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atmospheric absorption correction, shows no obvious variations across the years from 2012
to 2022. In addition, emissivity, including spectral emissivity as the input for satellite LST
calculation and the broadband emissivity for in situ LST calculation, shows insignificant
variation over the years. The correlation analysis indicates an ignorable correlation of
−0.045 for daytime and −0.007 for nighttime between the ∆LST and mean LSE over
the DRA site. Therefore, the issue is not related to the emissivity data set. Figure 5
shows the time series of the ground IR radiation, satellite LST, and in situ LST over the
DRA site. The time series of the satellite LST displays a strong seasonal cycle with very
minor variation for seasonal high and low temperatures over the years for both daytime
and nighttime, while the time series of upwelling and downwelling IR and in situ LST
display an upward increasing trend in recent years since 2018. The largest negative LST
error occurs in the summer when the in situ LST reaches its seasonal peak. The time
series of the monthly average of metrological parameters over the DRA site (obtained
at https://gml.noaa.gov/dv/iadv/graph.php?code=DRA&program=g-rad&type=gradts,
accessed on 1 May 2022) reveals a pronounced increase in both downwelling and upwelling
infrared radiation since 2018, particularly in the summer months from June to August
but the air temperature shows no obvious variation across the years, with an exception in
2018 with a minor increase and in 2019 with a colder summer temperature. Therefore, the
increasing ∆LST is mainly related to the rising in situ measurements, such as an increased
measurement uncertainty, microclimate change around the site due to site management,
etc. In addition, the surface topography near the DRA site is complicated. In a 30 km by
30 km area centered at the Desert Rock site, the surface elevation changes from 731 m to
2228 m. Such a large elevation variability has a significant impact on the homogeneity of
the LST and leads to a high uncertainty of LST validation results [20].
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Figure 5. The time series of in situ radiation (left) with upwelling IR (top left) and downwelling IT
(bottom left), satellite LST (top right), and ground LST (bottom right).

It is also interesting to note the strong seasonal variation over the PSU and SXF stations.
The LST error at the PSU site is generally between −0.5 to 2.0 K range, with a warm bias
in the spring and early summer and a cold bias in the late summer in the daytime, while
there is a warm bias in the whole summer in the nighttime. The PSU station is located in an
agriculture field and the land cover around the PSU site is quite diverse, with a mixture of
forests and rotating cropland. The place where the equipment is placed is covered with
grass and the grass is regularly mowed. The seasonal feature might be related to the crop
growth cycle and mowing routine. The LST error at the SXF site only shows a seasonal
variation for daytime observations, with an obvious cold bias in summer and a warm
bias in spring. There is no clear seasonal trend observed in the FPK site, which shows the
smallest seasonal variation among the six sites. This regularity of an error pattern might
be related to other factors that show seasonal features. In this study, the correlation test is
performed between ∆LST and multiple impact factors including TPW, sensor zenith angle,
mean spectral LSE, i.e., (ε11 + ε12)/2.0, and LSE difference, i.e., ε11−ε12. The result is
shown in Table 4. It generally indicates a strong relationship between the sensor zenith
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angle and daytime ∆LST over all of the sites except the BON station which has a small
correlation of 0.09 compared to other stations with a correlation coefficient from 0.25 to 0.58,
while the correlation is weak in the nighttime over most of the sites. Li et al. [19] conducted
an analysis on the impact factors for daytime MODIS LST errors, in which multiple factors
such as sensor zenith angle, cloud coverage, emissivity difference, NDVI, relative humidity,
etc. were analyzed, and found that the sensor zenith angle presents the highest correlation
at all of the sites except BON. Figure 6 shows how the ∆LST changes with the sensor zenith
angle for both daytime (in red color) and nighttime (in blue color). The LST error is close
to 0 at nadir and it remains nearly constant till the sensor zenith angle reaches 40 degrees
for both daytime and nighttime. Beyond 40 degrees, the LST error begins to deviate for
daytime and nighttime. During the daytime, the ∆LST decreases at a relatively fast rate
and gradually becomes negative and reaches the lowest negative values at the observation
edges. During the nighttime, however, the ∆LST drops and gradually becomes negative at
a slower rate and to a lesser extent. The LST validation is of a higher uncertainty under a
large angle, which on the one hand is due to the satellite LST product itself, the uncertainty
of large angles LST is greatly increased compared to the nadir view during the regression
process, and on the other hand, the large angle may introduce more mismatches between
the satellite view and ground view.

Table 4. Correlation between LST error and multiple factors for nighttime and daytime.

Day/Night Factors BON DRA FPK PSU SXF TBL

Night

TPW −0.2 −0.52 −0.24 0.15 0.01 −0.1

STZ −0.25 −0.16 −0.29 −0.03 −0.08 −0.23

emiMean −0.17 −0.04 −0.02 0.1 0.21 0.01

emiDiff −0.15 −0.03 0.06 0.32 −0.13 0.09

Day

TPW −0.55 −0.49 0.18 0.11 −0.17 −0.18

STZ −0.09 −0.33 −0.48 −0.25 −0.49 −0.58

emiMean −0.7 −0.02 −0.04 0.11 −0.35 −0.35

emiDiff −0.2 −0.01 0.01 −0.02 −0.01 −0.18
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SURFRAD sites.

A relatively strong correlation is also found between TPW and the daytime ∆LST,
with the strongest impact of 0.55 over the BON site and the least impact over the PSU site.
The emissivity difference overall shows a fairly weak correlation with the ∆LST for both
daytime and nighttime, except over the PSU site where the correlation of 0.32 is obtained
in the nighttime while the correlations of all of the other sites are below 0.2. The mean
emissivity shows a high correlation with daytime LST error over the BON, SXF, and TBL
stations, while a weak correlation is found with nighttime LST error.
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4.2. Validation Results against BSRN

Figure 7 shows the validation results against BSRN. Some outliers can be seen mostly
with station LST higher than satellite LST. The validation over the CAB site yields zero
overall bias and a RMSE of 2.36 K with a deviation of about −1.5 K and 0.8 K between
satellite LST and ground LST for the daytime and nighttime measurements, respectively.
Validation results over the GOB site indicate an overall bias of −0.25 K and RMSE of 1.74 K
with a deviation of about −0.1 K and −0.4 K between the satellite LST and ground LST for
daytime and nighttime measurements, respectively. To understand the fairly large cold bias
over the CAB site, the time series of ∆LST were analyzed, as shown in Figure 8. An abrupt
decline occurred in April 2020 before returning to a normal curve by the end of 2020.
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The satellite data, including the LST and input variables, were firstly investigated but
no anomaly was found during the time period. Therefore, the direction of the investigation
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was shifted to the ground LST and a discussion about the identified issue was made with
the data provider. It was confirmed that there was a major site management activity that
occurred in April 2020 which led to a surface cover change of the in situ ground site.
Figure 9 demonstrates the mean albedo variations that resulted from the activity. The site
was covered by green grass in early April 2020 and then leveling of the site led to it being
by bare soil which dried out till the end of April, during this time period the mismatch
between the satellite LST and ground LST reached a peak of up to 10 K, as shown in
Figure 9. This was followed by the recovery of the grassland, during which the discrepancy
was reduced accordingly. Note that the routine mowing activity from late July caused
a small albedo drop compared to that in April, followed by a drying out and recovery
process. The mowing and recovery might explain the small fluctuations of the LST error.
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The ∆LST also shows a seasonal variation over the CAB site where a cold bias displays
in the daytime while a warm bias displays in the nighttime in the summer. The LST
error over the GOB site does not show an obvious seasonal signal, except for a minor bias
variation to a very small extent, i.e., a warm bias in January to March and then a change to
a slight cold bias from April to July.

4.3. Validation Results against ARM

Two years of the SNPP VIIRS LST data in 2020 and 2021 were used in the validation
against ARM observations, while two years of the VNP21A1 LST data in 2019 and 2020
were validated as a reference. Figure 10 shows the validation results. The overall validation
of a combination of the 13 sites indicates a bias of−0.08 K and a RMSE of 1.68 K with nearly
9000 matchups for the SNPP LST, in which the nighttime LST achieves very close agreement
with the ground observations, with a bias of −0.11 K and RMSE of 1.05 K compared to zero
bias and a RMSE of 2.31 K in the daytime. For the VNP21A1 LST, the validation with nearly
8000 matchups yields an overall bias of 0.12 K and a RMSE of 2.55 K, in which the nighttime
LST presents a cold bias of −0.7 K and a RMSE of 1.85 K compared to a bias of 1.04 K and a
RMSE of 3.14 K in the daytime. The site-wide results, as shown at the bottom of Figure 10,
indicate a positive bias in the daytime and a negative bias at night over most of the sites
from VNP21 LST, while SNPP LST maintains a close agreement for most of the sites, except
for several sites such as E32 and E35 with a positive bias in the daytime, E36 with a negative
bias in the nighttime, and E41 with a positive bias in the daytime. Figure 11 shows the
time series of LST errors over each site included in this study. The nighttime LST error is
very stable with small fluctuations over all of the sites, while more variations are observed
during the daytime. Seasonal variations are noticeable over many of the sites such as E13,
E32, E33, and E37, with the positive differences in summer and negative differences in
winter, whereas there is a negative difference in early summer over station E35. It is thought
to be linked to the vegetation cycle with the low NDVI in winter and high NDVI in summer
as discussed in Section 5. The ARM stations are located on farmland. For this region,
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wheat serves as the major crop and it occupies approximately 65% of the area around the
ARM SGP central facility. There are some variations in the frequency of occurrence for
other classes such as corn/milo, pasture/grassland, and wheat stubble/dry grass [42]. The
vegetation cycle can change the land cover fractions and emissivity throughout the year. In
addition, the solar zenith angle varies with the season and the time of day, changing the
fractions of shadow and sunlit areas observed by satellites and in situ instruments. The
importance of this influence depends on the land cover type and is the least for the flat and
homogenous validation sites [21].
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5. Discussion

In this study, six of the ground sites from the SURFRAD network, two sites from
the BSRN network, and sixteen sites from the ARM network were used to evaluate the
performance of the SNPP VIIRS LST product with a reference from the VNP21 LST product.
It is found that the LST accuracy varies considerably from station to station and between
different satellite datasets, which can be attributed to different causes such as satellite
LST algorithm uncertainty, in situ LST quality, and site heterogeneity, etc. In this study,
the satellite LSTs are retrieved using different algorithms in which the VIIRS uses the
split window algorithm and the VNP21 uses the physics-based Temperature Emissivity
Separation algorithm. Because the two products are for the same sensor onboard the same
satellite, there is generally no temporal and geometric difference between the SNPP LST
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and VNP21 LST. The difference in the validation results mainly results from the algorithm
difference. Besides, the compositing method used in the VNP21A1 LST product may also
affect the validation results.

The stations from the SURFRAD, BSRN, and ARM networks have provided high-
quality ground measurements for years, which have been widely used in many studies.
The instruments are calibrated routinely, for example, the instruments in SURFRAD are
calibrated every year and the data quality is strictly managed. However, we must bear
in mind that the ground data are spot observations whereas the satellite data are an
aggregation of a much larger area at a viewing angle and time. Therefore, the direct
comparison between the satellite retrievals and the co-located ground observation might
involve spatial, temporal, and directional mismatches. The temporal mismatch is negligible
in the validation presented here due to the high temporal resolution of the ground data,
which is typically 1 min in all three of the networks. For validation with the VNP21A1
LST product, the temporal difference can reach up to 6 min. The directional mismatch
mainly happens with bushes or trees, with shadows created by complex geometry from
the sensor and the solar view from different directions, especially when coupled with the
terrain effects of the site. This effect is discussed in the validation over the KAL_R and EVO
stations [21] and a geometrical optical model is used to correct the directional impact. In
this study, there are no sites with dominant tree cover, therefore, it has a minor influence
on the validation. The mismatch in this study mainly occurs in the spatial domain, due to
the different fields of view of the ground instruments and satellite sensors. Based on the
method introduced in Section 3, the heterogeneity is analyzed for each station in the three
networks. Figure 12 shows the results for the SUFRAD stations.
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Figure 12. The heterogeneity analysis of SURFRAD stations over brightness temperature variable.

Pronounced seasonal variations are observed over the TBL, FPK, and BON stations,
and a weak variation is observed over the SXF station. Over the DRA site, however, the
interannual curve is very straight with very small fluctuations over the years. The scale
difference over the PSU station is also flat but with more fluctuations than the DRA site.
Note that the clear-sky observations are very limited over the PSU site, which restrains its
statistical significance. Generally, a constant deviation is observed from the FPK and SXF
stations with a cold bias of −0.43 K and −0.63 K, respectively, which indicates a greater
heterogeneity level over these two sites. The scale difference over DRA and PSU maintains
a close to zero line across all of the years from 2014 to 2022, with a systematic bias of−0.26 K
and 0.16 K, respectively. The seasonal cycle over the BON site clearly shows the warmer
BT10 of a 1 km spatial area during the late spring and colder BT10 during the summer
compared to the in situ brightness temperature. The pronounced seasonal variation over



Remote Sens. 2022, 14, 2863 17 of 21

the BON site is also found in the NDVI time series as shown in Figure 13, which shows
that the NDVI scale difference gradually increases from the spring and reaches the peak in
the summer and then gradually decreases in the fall, which basically synchronized with
the crop growth and serves as the main contributor to the seasonal cycle. A minor NDVI
variation is observed over the FPK site, while no obvious change is observed in all of the
other sites.
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Figure 14 shows the heterogeneity analysis over some of the ARM stations in which
sgpsirsE32 presents the most scattered scale difference in both of the BT10 and NDVI
variables, which indicates the most significant heterogeneity level among the 13 ARM sites.
Obvious seasonal patterns are observed over sgpsirsE32 and sgpsirsE37, while the minor
variation is observed over sgpsirsE34 and sgpsirsE35 for both the BT10 and NDVI analysis,
which explains the seasonal variation found in the LST error time series.
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As shown in Figure 15, the scale difference over the two BSRN stations shows no obvi-
ous seasonal variations and maintains at a stable level over the years; the scale difference
for both BT10 and NDVI are flat without an obvious seasonal cycle.
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Figure 15. The heterogeneity analysis of BSRN stations over BT10 (left) and NDVI variable (right).

The multi-year average of the internal heterogeneity is calculated and the results
indicate that TBL, among the six SURFRAD sites, shows the maximum internal hetero-
geneity level of 1.71 K and BON shows the minimum internal heterogeneity level of 0.75 K,
followed by the DRA site with an internal heterogeneity of 0.78 K; sgpsirsE33 among the
sixteen ARM sites shows the maximum heterogeneity level of 1.11 K, and sgpsirsE34 shows
the minimum heterogeneity level of 0.56 K; the CAB station shows a heterogeneity level of
0.43 K and GOB shows a heterogeneity level of 0.72 K. Note that this result is impacted by
the clear-sky data sample numbers at each site.

It is found that the station heterogeneity analysis can help interpret the LST error
patterns over some of the sites; however, the LST error may present a contrary trend
or pattern than the scale difference over some of the other sites, which is related to the
limitations of this analysis. Firstly, the simplification of the satellite pixel size as a 1 km
circle may bring in some uncertainty, particularly when the satellite is viewing the station
at a large angle. Secondly, the scale difference only represents a nadir-view condition, due
to the limited view angle range of Landsat 8 which is about 6 degrees, while the sensor
zenith angle of VIIRS can reach over 70 degrees. Thus, the LST errors related to emissivity
anisotropy and large angles cannot be analyzed using this method. Thirdly, the Landsat 8
data are very limited due to its 16-day repeat cycle, and the screening of clear-sky criteria
further reduces the number of valid observations, which may affect the analysis results,
particularly the seasonal patterns. On the one hand, fewer matchups might lead to missing
some patterns, on the other hand, they may skew the pattern and statistics.

6. Conclusions

This study validates the VIIRS LST against the in situ data from three networks
including SURFRAD, BSRN, and ARM with a total of 21 stations using 10 years of available
data. The NOAA-20 VIIRS LST is validated against SURFRAD to ensure a consistent
performance among the JPSS series satellite and the VNP21A1 LST is used as a reference.
The stations represent different land cover types, including cropland, grassland, shrubland,
barren surfaces, and a mixture of several surface types on site. The same validation
procedure was used for different VIIRS LST products, therefore making the validation
results comparable to each other. The difference found between the SNPP VIIRS LST
product and VNP21 LST product is mainly caused by the algorithm difference.

The results were analyzed at two levels: the overall level with a combination of all of
the sites in a network, and the site-wide level with each station, and the statistical accuracy
and precision are presented for the daytime and nighttime separately. The results indicate
an overall close agreement between the VIIRS LST and the ground measurements with a
bias of −0.4 K and a RMSE of 1.9 K over six SURFURD sites; a bias of −0.3 K and a RMSE
of 1.7 K over two BSRN sites and a bias of −0.1 K and a RMSE of 1.7 K over 13 ARM sites.
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In general, the RMSE, as expected, is much smaller in the nighttime due to the absence of
the shadow impact and the lower influence of heterogeneous land cover, which in contrast
leads to the increased difference between the satellite LST and ground measurement during
daytime. The site-wide results show that the median accuracies of the individual stations
are within −1.5 K to 0.8 K during the nighttime, and −1.5 K to 1.3 K during the daytime
among all of the 21 sites, with most of the sites less than 1 K for both daytime and nighttime.

The time series analysis was conducted over each site for the whole study period,
i.e., 2012 to 2022 for SURFRAD, 2015 to 2021 for BSRN, and 2020–2021 for ARM stations.
The seasonal pattern was found to be pronounced over some sites, such as BON, PSU,
and some of the ARM sites, which might be related to the vegetation growth cycle, site
heterogeneity, site management, etc. In this study, the time series helped to identify the
periodic mismatch between satellite estimations and ground measurements and revealed
issues from the ground measurements e.g., the CAB site.

The cloud contamination is found to have a great impact on the validation results
though the satellite cloud mask and additional cloud screening procedures were applied.
Outliers can still be found from the comparison between the satellite retrievals and their
in situ counterpart, particularly during the nighttime. This is often due to failure in the
detection of cloudy pixels, especially small pieces of cloud or cloud edge. The improvement
in cloud detection will benefit the LST validation studies.

We should bear in mind that the ground validation quality is strongly subject to the
spatial heterogeneity of surface temperature within the satellite field of view, which is not
well presented by the ground in situ observations. This restricts the LST validation only at
the relatively homogeneous ground stations. In this study, we tried to quantify the station
heterogeneity based on Landsat 8 data, which proves a promising outcome in not only the
characterization of the site at a heterogeneity level, but also the capture of the seasonal
or inter-annual cycle feature from the long-term time series. The method itself is simple
and straightforward.

The enterprise LST algorithm has been running in the operational environment since
June 2019 and the data are available at NOAA CLASS. Compared to the 10-year MODIS
LST validation results [19], the results from the 10-year VIIRS LST validation demonstrate
the good quality of the LST product of the JPSS series satellite.
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